论文写作可用素材


实验

实验部分有时候可以引用别人的结果,这个时候可以说:

实验效果比所有的baseline都要好

Autoformer achieves the consistent state-ofthe-art performance in all benchmarks and all prediction length settings (Table 1).

实验效果比绝大多数baseline要好

这里分几种情况:

只有一组效果不好

(论文源自Autoformer)
Under the comparison with extensive baselines, our Autoformer still achieves state-of-the-art performance for the long-term forecasting tasks.
(因为这个实验预测了多个序列,只有最短序列的那一组效果不是最好,所以后面加上了一个定语,for the long-term forecasting)

实验效果没有比别人好时进行分析

  • Also, we find that ARIMA [1] performs best in the input-96-predict-96 setting of the Exchange dataset but fails in the long-term setting. This situation of ARIMA can be benefited from its inherent capacity for non-stationary economic data but is limited by the intricate temporal patterns of real-world series.

文章作者: Jason Lin
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 reprint policy. If reproduced, please indicate source Jason Lin !
  目录